polarization-insensitive time-domain OFT
نویسندگان
چکیده
We have demonstrated the generation of a 320 Gb/s NyquistOTDM signal by rectangular filtering on an RZ-OTDM signal with the filter bandwidth (320 GHz) equal to the baud rate (320 Gbaud) and the reception of such a Nyquist-OTDM signal using polarization-insensitive time-domain optical Fourier transformation (TD-OFT) followed by passive filtering. After the time-to-frequency mapping in the TD-OFT, the NyquistOTDM signal with its characteristic sinc-shaped time-domain trace is converted into an orthogonal frequency division multiplexing (OFDM) signal with sinc-shaped spectra for each subcarrier. The subcarrier frequency spacing of the converted OFDM signal is designed to be larger than the transform-limited case, here 10 times greater than the symbol rate of each subcarrier. Therefore, only passive filtering is needed to extract the subcarriers of the converted OFDM signal. In addition, a polarization diversity scheme is used in the four-wave mixing (FWM) based TD-OFT, and less than 0.5 dB polarization sensitivity is demonstrated in the OTDM receiver. ©2013 Optical Society of America OCIS codes: (060.2330) Fiber optics communications; (060.4230) Multiplexing; (070.4340) Nonlinear optical signal processing; (070.1170) Analog optical signal processing. References and links 1. P. J. Winzer, “High-spectral-efficiency optical modulation formats,” J. Lightwave Technol. 30(24), 3824–3835 (2012). 2. H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” ECOC 2012 (2012), paper Th.3.C.1. 3. D. Qian, E. Ip, M.-F. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y.-K. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, “1.05Pb/s transmission with 109b/s/Hz spectral efficiency using hybrid singleand few-mode cores,” in Frontiers in Optics Conference (2012), paper FW6C.3. 4. T. H. Lotz, X. Liu, S. Chandrasekhar, P. J. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, and D. W. Peckham, “Coded PDM-OFDM transmission with shaped 256-iterative-polar-modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach,” J. Lightwave Technol. 31(4), 538–545 (2013). 5. T. Omiya, M. Yoshida, and M. Nakazawa, “400 Gbit/s 256 QAM-OFDM transmission over 720 km with a 14 bit/s/Hz spectral efficiency by using high-resolution FDE,” Opt. Express 21(3), 2632–2641 (2013). 6. R. Schmogrow, D. Hillerkuss, S. Wolf, B. Bäuerle, M. Winter, P. Kleinow, B. Nebendahl, T. Dippon, P. C. Schindler, C. Koos, W. Freude, and J. Leuthold, “512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz,” Opt. Express 20(6), 6439–6447 (2012). 7. G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and COOFDM in high-speed PM-QPSK systems,” IEEE Photonics Technol. Lett. 22(15), 1129–1131 (2010). 8. D. Hillerkuss, R. Schmogrow, M. Meyer, S. Wolf, M. Jordan, P. Kleinow, N. Lindenmann, P. C. Schindler, A. Melikyan, X. Yang, S. Ben-Ezra, B. Nebendahl, M. Dreschmann, J. Meyer, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, L. Altenhain, T. Ellermeyer, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Single-laser 32.5 Tbit/s Nyquist WDM transmission,” J. Opt. Commun. Netw. 4(10), 715–723 (2012). #199119 $15.00 USD Received 9 Oct 2013; revised 28 Nov 2013; accepted 3 Dec 2013; published 23 Dec 2013 (C) 2014 OSA 13 January 2014 | Vol. 22, No. 1 | DOI:10.1364/OE.22.000110 | OPTICS EXPRESS 110 9. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008). 10. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 linerate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364– 371 (2011). 11. T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection,” in Optical Fiber Communication Conference (OFC), Optical Society of America (2011), paper. PDPA9. 12. H. C. Hansen Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010). 13. H. Hu, P. Münster, E. Palushani, M. Galili, H. C. H. Mulvad, P. Jeppesen, and L. K. Oxenløwe, “640 GBd phase-correlated OTDM NRZ-OOK generation and field trial transmission,” J. Lightwave Technol. 31(4), 696– 701 (2013). 14. M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20(2), 1129–1140 (2012). 15. R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. BenEzra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express 20(1), 317–337 (2012). 16. Z. Jia, J. Yu, H. Chien, Z. Dong, and D. Huo, “Field transmission of 100 G and beyond: multiple baud rates and mixed line rates using Nyquist-WDM technology,” J. Lightwave Technol. 30(24), 3793–3804 (2012). 17. H. Hu, J. Wang, H. Ji, E. Palushani, M. Galili, H. C. H. Mulvad, P. Jeppesen, and L. K. Oxenløwe, “Nyquist filtering of 160 GBaud NRZ-like DPSK signal,” in Optical Fiber Communication Conference (OFC), Optical Society of America (2013), paper JW2A.61. 18. N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010). 19. N. K. Fontaine, G. Raybon, B. Guan, A. L. Adamiecki, P. Winzer, R. Ryf, A. Konczykowska, F. Jorge, J. Dupuy, L. L. Buhl, S. Chandrasekhar, R. Delbue, P. Pupalaikis, and A. Sureka, “228-GHz coherent receiver using digital optical bandwidth interleaving and reception of 214-GBd (856-Gb/s) PDM-QPSK,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper Th.3.A.1. 20. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951– 1963 (1994). 21. J. van Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” J. Lightwave Technol. 24(7), 2649–2662 (2006). 22. H. Hu, J. L. Areal, H. C. H. Mulvad, M. Galili, K. Dalgaard, E. Palushani, A. Clausen, M. S. Berger, P. Jeppesen, and L. K. Oxenløwe, “Synchronization, retiming and time-division multiplexing of an asynchronous 10 Gigabit NRZ Ethernet packet to terabit Ethernet,” Opt. Express 19(26), B931–B937 (2011). 23. E. Palushani, H. C. H. Mulvad, M. Galili, H. Hu, L. K. Oxenlowe, A. T. Clausen, and P. Jeppesen, “OTDM-toWDM conversion based on time-to-frequency mapping by time-domain optical Fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012). 24. H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by timedomain optical Fourier transformation in a silicon nanowire,” Opt. Express 19(26), B825–B835 (2011). 25. H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenløwe, “1.28 Tbaud Nyquist signal transmission using timedomain optical Fourier transformation based receiver,” in CLEO, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh5D.5. 26. H. Hu, E. Palushani, M. Galili, H. C. H. Mulvad, A. Clausen, L. K. Oxenløwe, and P. Jeppesen, “640 Gbit/s and 1.28 Tbit/s polarisation insensitive all optical wavelength conversion,” Opt. Express 18(10), 9961–9966 (2010). 27. H. Hu, H. C. H. Mulvad, M. Galili, E. Palushani, J. Xu, A. T. Clausen, L. K. Oxenløwe, and P. Jeppesen, “Polarization-insensitive 640 Gb/s demultiplexing based on four wave mixing in a polarization-maintaining fibre loop,” J. Lightwave Technol. 28(12), 1789–1795 (2010).
منابع مشابه
Demonstration of polarization-insensitive spatial light modulation using a single polarization-sensitive spatial light modulator
We present a simple configuration incorporating a single polarization-sensitive phase-only liquid crystal spatial light modulator (LC-SLM) to facilitate polarization-insensitive spatial light modulation. The polarization-insensitive configuration is formed by a polarization beam splitter (PBS), a polarization-sensitive phase-only LC-SLM, a half-wave plate (HWP), and a mirror in a loop structure...
متن کاملMultiplexing-based polarization sensitive en-face optical coherence tomography.
We present a time-domain polarization-sensitive (PS) optical coherence tomography configuration operating at 830 nm, equipped with multichannel acousto-optic deflectors and single photodetectors. The system is used to simultaneously acquire interference information from multiple PS channels and to enable measurement and imaging of backscattered intensity to create both PS and polarization insen...
متن کاملRayleigh Fiber Optics Gyroscope - IEEE Photonics Technology Letters
A novel kind of fiber-optic gyroscope based on Rayleigh backscattering in a fiber-ring resonator is presented in this letter. The information on the rotation rate is obtained from the composed response of the fiber ring to an optical time-domain reflectometry (OTDR) instrument. The developed model based on the coherence properties of the Rayleigh scattering yields to a polarization-insensitive ...
متن کاملPolarization Insensitive Wavelength Conversion Based on Four-Wave Mixing in a Silicon Nanowire
We experimentally demonstrate, for the first time, polarization-insensitive wavelength conversion of a 10 Gb/s NRZ-OOK data signal based on four-wave mixing in a silicon nanowire with bit-error rate measurements. OCIS codes: (190.4380) Nonlinear optics, four-wave mixing; (190.4390) Nonlinear optics, integrated optics; (230.7370) Waveguide; (130.7405) Wavelength conversion devices.
متن کاملThermodynamic properties of polarized liquid 3He along different isentropic paths
The dependence of some thermodynamic properties of spin-polarized liquid 3He such as velocity of sound, adiabatic index, isentropic compressibility and temperature on the spin polarization has been investigated along different isentropic paths. The Lennard-Jones potential has been used in our calculations. It has been found that for higher values of entropy, the spin polarization has greate...
متن کامل